PROBLEMS OF FIRST TRANSATLANTIC BALLOON TRIP

After having been for several decades the propounded and the subject of various attempts to cross the Atlantic Ocean, an actual attempt to traverse the Atlantic by a balloon was made. Two months hence Waler Wilbur and his brother Orville have been preparing to make the attempt, and will, as announced in the New York Times yesterday, try to fly from the Long Island neighborhood of New York, as a base, to the immediate vicinity of London, in the dirigible balloon, the vehicle to which Mr. Wilbur and his brother have given the name of the Spirit of America, which they have been working upon for months. The balloon is a huge and beautifully constructed one, and the brothers have been working on it for months. The attempt will be made on July 10, 1910.

The Weevil: Dirigible Balloon is Flight.

The Weevil, a dirigible balloon fitted with complete steel suspension without, inside barrels, apparatus, repaire, new hardware, tools, food and water supplies, except under extraordinary circumstances, the inflated bag will not strangle the engines, because the engines are not designed to power the dirigible, but to power the wind. The dirigible is steered by the wind, not by the engines. The engines are only used to power the balloon, not to power the wind.
PROBLEMS OF FIRST TRANSATLANTIC BALLOON TRIP

The Long Deck of the America.

The Suffren is in Process of Construction for the Puller Frizzell. Some view of the Size of the Contests by Counting the Ships of the Showing in the Illustrations.

May be Had by Comparing the Ship Shown in the Illustrations.

The Chart Room of the America. (In Circle Above)

The key to the chart for the major and minor events is given above.

To see if for the sake of the many and minor events, at least two more are given above.

The chart is in process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.

The key to the chart for the major and minor events is given above.

In the process of construction for the Puller Frizzell. Some view of the size of the contests by counting the ships shown in the illustrations.
PROBLEMS OF THE FIRST TRANSATLANTIC BALLOON TRIP

The first practical work was done by a Frenchman, Colonel Charles Nungesser, who placed in Nantes an aluminum balloon, the prototype of a modern rigid dirigible, in 1900. He lost his first machine through mechanical difficulties during inflation, and was too poor to build another, so he took his four years to collect sufficient funds to do so, and then a twelve horsepower gasoline engine was fitted to it. He managed to get aloft with it, and by 1903 he was able to make his studies in which he planned, under the lifting power of the heated air, to fly from Paris and return. The Montgolfiers and others stirred about building a hot air balloon, but the lifting power of hot air had been brought home by Nungesser and other pioneers.

Shortly thereafter Prof. Charles, a rival of the Montgolfiers, invented rubber-impregnated silk for balloon envelopes and employed hydrogen gas as the lifting power. He also designed the car which is used even to this day for many of the cars of balloons and the cars of the modern balloon. The gain in knowledge as to balloon travel and its operation and control in that in the manufacture and construction of the balloon today, is very much the same as those mentioned by our great-grandfathers. It is the advent of the gas and engine and its rapid stages of development that have really brought modern balloon travel within the ken of the average traveler.

It was decided that the future of aviation should be in the hands of the French. With their excellent climate and their excellent means, it was natural that they should be leaders in the field. The American aviation was in its infancy. The French were already well established. The French government gave a financial aid of $2,500,000 to the French government to establish an air force and to establish an air corps.

Then Count Zeppelin appeared on the scene of aeronautical excellence. He convinced M. Schumacher, and building largely in the field of dirigibles, Count Zeppelin employed the modern railway locomotive, with its huge bellows and its huge wheels, to drive two huge dirigibles in pairs. Experiments with his first dirigible, although it did manage to attain a height of fifteen miles an hour, the material for the gaseous containers in this present-day dirigible balloon was found to be too heavy. The material used in the modern dirigible is to the modern railway locomotive.

Then followed numerous efforts to produce a practicable dirigible, but it was not until 1905 that David Scott invented an aluminum balloon, the prototype of a modern rigid dirigible, in 1900. He lost his first machine through mechanical difficulties during inflation, and was too poor to build another, so he took his four years to collect sufficient funds to do so, and then a twelve horsepower gasoline engine was fitted to it. He managed to get aloft with it, and by 1903 he was able to make his studies in which he planned, under the lifting power of the heated air, to fly from Paris and return. The Montgolfiers and others stirred about building a hot air balloon, but the lifting power of hot air had been brought home by Nungesser and other pioneers.

The first practical work was done by a Frenchman, Colonel Charles Nungesser, who placed in Nantes an aluminum balloon, the prototype of a modern rigid dirigible, in 1900. He lost his first machine through mechanical difficulties during inflation, and was too poor to build another, so he took his four years to collect sufficient funds to do so, and then a twelve horsepower gasoline engine was fitted to it. He managed to get aloft with it, and by 1903 he was able to make his studies in which he planned, under the lifting power of the heated air, to fly from Paris and return. The Montgolfiers and others stirred about building a hot air balloon, but the lifting power of hot air had been brought home by Nungesser and other pioneers.

The first practical work was done by a Frenchman, Colonel Charles Nungesser, who placed in Nantes an aluminum balloon, the prototype of a modern rigid dirigible, in 1900. He lost his first machine through mechanical difficulties during inflation, and was too poor to build another, so he took his four years to collect sufficient funds to do so, and then a twelve horsepower gasoline engine was fitted to it. He managed to get aloft with it, and by 1903 he was able to make his studies in which he planned, under the lifting power of the heated air, to fly from Paris and return. The Montgolfiers and others stirred about building a hot air balloon, but the lifting power of hot air had been brought home by Nungesser and other pioneers.

The first practical work was done by a Frenchman, Colonel Charles Nungesser, who placed in Nantes an aluminum balloon, the prototype of a modern rigid dirigible, in 1900. He lost his first machine through mechanical difficulties during inflation, and was too poor to build another, so he took his four years to collect sufficient funds to do so, and then a twelve horsepower gasoline engine was fitted to it. He managed to get aloft with it, and by 1903 he was able to make his studies in which he planned, under the lifting power of the heated air, to fly from Paris and return. The Montgolfiers and others stirred about building a hot air balloon, but the lifting power of hot air had been brought home by Nungesser and other pioneers.

The first practical work was done by a Frenchman, Colonel Charles Nungesser, who placed in Nantes an aluminum balloon, the prototype of a modern rigid dirigible, in 1900. He lost his first machine through mechanical difficulties during inflation, and was too poor to build another, so he took his four years to collect sufficient funds to do so, and then a twelve horsepower gasoline engine was fitted to it. He managed to get aloft with it, and by 1903 he was able to make his studies in which he planned, under the lifting power of the heated air, to fly from Paris and return. The Montgolfiers and others stirred about building a hot air balloon, but the lifting power of hot air had been brought home by Nungesser and other pioneers.